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ABSTRACT 

The Z and Z splittings, predicted to be equal in the SU(6) quark 

model, are shown to differ because the smaller size of the E wave function 

enhances the short range hyperfine interaction. The change in the relative 

motion of a u-s pair in the hyperon produced by a change in the wass of the 

third quark is not a simple scale change and is sensitive to details of the 

interquark potential. This effect Is absent in the harmonic oscillates model, 

where the third quark is completely decoupled from the relative motion within 

the other pair, but is appreciable and has the right order of magnitude in the 

logarithmic potential model. 
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The mass differences between corresponding baryoo states in the l/2+ 

octet and the 3/2+ decuplet have been described in the quark model as due to a 

two-body hyperEin interaction between quark pairs. 1,2,3 The relations 

between hyperfine splittings in different baryons have been found to be l.n 

good agreement with experiment. Rut the discrepancy with the prediction 

WE*) - M(Z) = I _ M(z) (1) 

is puzzling. 4 The LHS is 216 NeV, the RHS is 192 HeV. Although this 

difference is only 12% and could be dismissed as less than the precision 

expected for such a crude model, it is tempting to as!< whether this difference 

is a physically interesting signal above the noise. 

The pair of identical quarks, nonstrange in the C, strange in the E:, is 

always in the spin triplet state and does not contribute to the hyperfine 

splitting. With SU(3) symmetric baryon wave functions the strange-nonstrange 

pairs whose spin couplings are different in the 3/2+ and l/2+ states have the 

same wave functions in the Z and E and therefore give the same hyperfine 

splitting. 

A discrepancy with the relation (1) suggests that N(3) breaking nukes 

the wave functions of the strange-nonstrange pairs different in the C and 

the Z:. Since the Z is the more massive, it is natural to suggest that 

the 2 wave function has a smaller radius. 4 The short range hyperfine 

interaction is then larger. However, quantitative investigation5 of SU(3) 

symmetry breaking in the Isgur-Xarl harmonic oscillator model' does not 

significantly alter the prediction (1). 

We point out in this paper that the null result in the Isgur-Karl model 
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arises from peculiarities of the harmouic oscillator potential, and that 

effects of the right sign and order of magnitude are obtained with other 

potentials, such as the Quigg-Xosner logarithmic potential. 7 The underlying 

physical difference is the separability of the two relative degrees of freedom 

found only in the harmonic potential and not in other potentials. In the 

harmonic oscillator model the relative motion of one quark with respect to the 

center of mass of the other pair is completely decoupled from the relative 

motion within the pair. Changing the mass of the odd quark only changes the 

size of its zwtion relative to the other pair. The size of the pair wave 

function is unaffected. In other potentials the motion of the third quark is 

coupled to the overall size of the entire wave function. 

This effect could be calculated quantitatively by solving the three-body 

problem for the case of unequal masses in different potentials. Rather than 

undertaking such an ambitious program we obtain approximate estimates of the 

effect by simpler methods. Qualitative and semi-quantitative features are 

obtained by using the virial theorem and scaling properties of wave functions 

for systems with nearly equal masses, with a small mass difference considered 

as a perturbation. 

Consider a simplified node1 in which the strange-nonstrange pair whose 

hyperfine interaction is being studied is replaced by a pair of identical 

quarks whose reduced mass is equal to the mass of the strange-nonstrange 

pair. Our fictitious quarks then have the raass 

mq 
= 2mums/(mU + Ills) . (2) 

We study the change in the hyperfine interaction of this quark pair, 
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denoted as quarks number 1 and 2, as a function of the iu:;s ,113 of the third 

quark. The qualitative features of this effect can bz :;~en by cxnrnining the 

behavior of Lhe kinetic energy of the relative motion of the 12 pair, 

T12 = P;*/2m12 (3a) 

where Sfj = (si - $j)/2 is the relative momentum of th? pair ij and mij 

is the reduced mass of the pair. Since only rn3 is changed, m31 = ~123 is 

changed but “12 remains wchanged. The expectation value of ths relative 

kinetic energy is given by the virial theorem 

1 
<Ti2’ = ‘7 ‘12 

2 2 (3b) 

+!Z dV31 (=12 + r31 - ri3) > 
C------l 12 dr3Z 4r31r12 

> 

where the potential V is assumed to be the sum of two-body potentials 

v = V12b12) + V23(r23) + V31(r31) . (3c) 

The hyperfine interaction in a two-body system is assumed to bz 

proportional to the square of the wave function at the origin. The 

expectation value of this interaction is related by a wll known thrarem to 

the expectation value of the derivative of the potential. * This theorem gives 

an expression very similar to (3b) for the three-body system, 
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2 2 

"hYP = KT dVl2 d"23 ('12 -' =23 - =31 
+ (----1 

,2 ) 
- 

12 "12 <dr12 
- 

dr23 4r23r12 

2 2 

+ (-----I 
2, dV31 (=12 + r31 - '23 > - 

dr31 4r31r12 

(3d) 

where K is a constant depending upon the strength of the internctiosl and the 

particle classes. 

Consider the case of a power law potential 

dV x= Ur a-l 
(4) 

where the derivative has been used in the definition (4) in order to include 

the case of the log potential, a = 0, as well a8 all power law potentials. 

Substituting Eq.(4) into Eq.(3b) then gives 

<T12> = $ <rT2 2 a-2 + i (r12r23 + rF3 - r,"1rz;2 + rf,r,U;' + ra 
31 - rz3rT;2)> 

(5a) 

= g <ry2 + + (r-i3 + rtl) +$ [rf,(r&" + r3*i2) - (ri1r2a;2 + ri3r;i2)> . 

This can be rewritten 

<T12> = T <rf2[1 + i {(r12/r23)2-a + (r12/r31)2-Q 

a-2 
+ (r23 

Similarly 
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$vP 
12 = b12<r;;'[l ++ [(r12/r23)2-u + (r12/r31)2-a 

(5c) 

a-2 
+ (=23 

These expressions (5) illustrate the qualitative behavior of the relative 

motion of the 12 pair as a function of the mass m3. For the symmetric case, 

lx1 = rJ2 = m3, expectation values are symmetric under any permutations of the 

indices 1, 2 and 3. The two terms in the square bracket of Eq.(5a) cancel and 

<T > 12 sym =<T > 23 sym = <T31>sym = p <rTj> . (64 

For the harmonic oscillator potential, a = 2, Eq.(5a) simplifies and the 

result (6a) is seen to hold for all values of m3. Thus <T12> is independent 

of the motion and mass of particle 3, as expected. tlowever, for a < 2, the 

expression depends upon the motion of particle 3. In particular, in the 

=12 5 + 0 limit m3 + 0, where r23 = r31 >> r12, -- - 
=23 =31 

, only the first term on 

the right hand side of Eq.(5b) survives, and 

2-i’ <T12> 
= G <ry2> . 

3 (6b) 

a<2 

This is two-thirds of the value for the symmetric case. Since the kinetic 

energy scales like the inverse of the mean square radius, <PZj> = l/<rij>, we 

see that for a < 2 decreasing the uass of particle 3 not only makes the wave 

function have a larger radius for the notion of particle 3 relative to 

particles 1 and 2 but also affects the relative motion of 1 and 2 and nukes 

its radius larger. 
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Siwilar effects are S:~SII in the hyperline interaction (5~). For tile 

harmonic 0sctLlator case, cx = 2, Eq.(5c) sinplifies to g:ive 

[v~pla=2 = (3/2)%n12<r12> . (6~) 

This is again independent oE the notion and DASS of particle 3, as ex?ectc?d. 

lIowever, for a < 2 the expression (5~) depends upon the mass of part.icle 3, 

and in the liait m3 = 0, the result analogous to (6b) is obtained as all the 

terms in (5~) vanish except Eor the first term. 

hyp = K n <p-l> 

;y "12 '12 12 * 
3 

a<2 

This result is again two-thirds of the value for the harwnic oscillator 

case and shcws that decreasing the mass of particle 3 increases the overall 

size of the wave function including the relative motion of particles 1 and 

2. However, a simple relation analogous to (6a) does not exist for the 

hyperfine interaction in the symmetric case because the two terms in the 

square bracket do not cancel. The kinetic energy has simpler properties than 

the hyperfine interaction because the virial theorem gives a simple expression 

for the total kinetic energy and there is no analogous simple expression for 

the total hyperfine interaction. 

Eqs.(b) show another qualitative difference between the harmonic 

oscillator potential and potentials like the Coulomb and logarithmic 

potentials which are singular at the origin. Increasing all masses by the 

same factor decreases the size of the system and increases the hyperfine 

interaction. This effect can be computed si~nply by taking the logarithxic 
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derivative of Eq.(5c) and scaling the vave functions 

d -- 
d log m [ log v;;q = (be) 

where m denotes a mass scale parameter. Since all msses scale by the s:ix 

factor, d(log mij) Z d(log ra) for all ij and 

d 
d log m [log vzp] = 1 + &$ = & (6f) 

There are two independent contributions, the direct contribution from ml2 

and the effect of scaling of the wave function. For the oscillator potential 

the two factors m12 and <rF;l> work in opposite directicns, with the 

increase in ml2 dominating over the decrease in <I-:;~>. For potentials with 

a < 1, the two factors in (6d) work in the sane direction. The result is a 

strong a dependence with values of 314, 312 and 3 respectively for the 

oscillator, log and Coulomb potentials. For the case where m3 changes and 

ml2 is unchanged, the analog of Eq.(6e) shows that the entire effect cones 

from changes in <rla;l > which has opposite signs for the same scale change in 

the wave function in the cases of a>1 and a< 1. 

Eqs.(5) show that the relative kinetic energy and the hyperfine 

interaction depend not only upon the size of the system but also on 

expectation values of operators depending upon correlations between different 

pairs. We now attempt to obtain a quantitattve estimate of the effect wSich 

is insensitive to assunptions about correlations. For this reason we work 

with the relative kinetic energy (5a) which is less sensitive to these 

correlations and should have the same qualitative scaling behavior as the 



hyperfine interaction. Note, however, that in any atteupt to solve thr three 

body problem numerically, the expression (5~) nay give a better value for the 

hyperfine interaction than the direct calculation of wave functions nt t'ne 

origin, because OF arguments demonstrated in Xef.8. 

We now attempt to estimate this effect quantitatively. Our unperturbed 

wave function Y. is defined as the exact solution o: the three-body problem 

with the real two-body interaction for the case where all quarks have equal 

masses given by Eq.(2). The change in the wave function produced by a small 

change 6m3 in m3 is assuaed to be cxpressed by changing the scale of the 

relative co-ordinate r12 by a factor 1 + K and the scales of the relative 

co-ordinates r23 and r31 by a factor 1 + X, where I: and X are - 

SEdl. The expectation vali?e of any function F(r12,r23, r31) of the relative 

co-ordinates in this perturbed vave function is then 

<YIF(r 12>r23~=31)1y> = <yob'[(l + ~)'~~,(l + Ur23,(1 + A)r31]lYo> . (7) 

The change in the expectation values of the kinetic energy Tij of the 

relative mtion of the ij pair is given to first order in 6m3, K and A 

by 

6<T12> = 
6(Pt2) 

2m12 
= -2~ <T12> 

2 

cS<T~~> = 6<T23> = 6( $$ = -2X <T23> - 2 <T23> . 

(8.3) 

(8b) 

The values of <Tij> can also be calculated by substituting Eq.(7) into 

the expression (5a) obtained from the virial theorem and the analogous 
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expression for <T23> obtained by cyclic permutation on Eq.(53). Thus 

<T12> + 6<T12> =; <(l + #ry2 +; (1 + ")a(ry3 + r&, 

cJ=) 

+ -jj [(l + ~)~(l + X)a-2~~2(~~;2 + czy2) - (1 + X)"(rilrz;2 + rz3rii2)> 

<T23> + 6<T23> = y <(l + X)ory3 + + (1 + X)arTl + (1 + K)arF2 

1 22 
+T [Cl + 1) =23U + A) 

a-2 a-2 r31 + (1 + K)a-2rTi2 (9b) 

- (1 + K)*(l + X)"-2r:2r3a;2 - (1 + x)2(1 + K)a-2r~1r~~2> . - 

Combining Eqs.(6a), (8) and (9) and using the permutation symmetry of the wave 

function then gives to first order in K and X, 

6<T12> =; <Tij> [CM ++ a1 + (K - A)+$ = -2~<T~j> (lo=) 

6<T23> =; <Tij> [; aX +$ CZK ++ (1 - ~)b,] = (-2X - $)<Tij> U'Jb) 

where 
<r2 rav2> 

0, : 
ij jk 

<rTj> ' 
kf-i. WC) 

Solving these equations (10) for I: and X gives 

2(2+a-a) 6m23 
K = - 3(u + 2)(a + 4 + 2ea) y3 

A=- 
4(a -1- ea + 3) 6m23 - 3(u + 2)(a + 4 + 20a) . 

m23 
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From Eq.(lZc) we see that I( = 0 for the harmonic oscillator potential 

where a=2 and $,=l. This again shrws no effect a:, rl2 fro,11 

changing "23 in the harmonic case. 

For the log potential, a = 0 

K =- 
0 3,'; 6 (2) - (12=) 

If the hyperfine interaction Vij hyp between quarks i and j is assumed 

to scale like the square of t'ae wave function of the pair ij at the origin, 
- 

WJhYP> 2 
12 y2c4 

<VhYP> = 

> = 

<.P12(Oj2> 

-3K 
(12b) 

12 
o = ($o+J 2H~l - 

A better result is presumably obtainable by using Eq.(Sc), but is rr.ore 

complicated because it depends on several correlation parameters. we 

therefore use (12b). 

In the unperturbed state, m23 = mq/2, where mq is given by 

equation (2). For the Z and Z systens which change m3 in opposite 

directions from the symmetric state, 

(!.& = -(2-z& = ,;;1 ; >; . $ 
” 

where the numerical value is obtained by setting rn,/~~~ ii 312. Then 

(13) 

( ‘whYP ): - WhYP), 
$vP 
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Evaluation of i$o requirss the knovlerl~~ UT tile wave function. 1:waevrr Erwl 

the Syl!ll"etry 

2 
$0 = %2r23 

-3 = cr2 23r;;> = 1 +; <(r12r;; - r23r;;)2> > 1 . (15) 

This gives the lower bound 

&vp 1 bs - muI 1 
“hY? > 3 (m s + mu, - iT - 

The effect is thus seeil to have the right sign and the right order of 

magnitude. If harmonic oscillator wave functions are used to evaluate $,, 

using the Isgur-Karl relative variables p and X, 0, = 2.5 is obtained, 

which gives l/9 or 11% for 6V 
hyp'"W' 

A similar effect should be present in the hyperfine interactIon between 

two nonstrange quarks when the mass of the third quark is changed fron mu 

to m,. The prediction2 

MA - MN = (l/2)(25 + ME - 3MA) (17) 

relates the ud hyperfine splitting in the A-N systen to the X*-Z-:. 

system. Here the LHS is 294 MeV and the EMS is 307 E&V, giving a smaller 

effect of 4% in the same direction as the discrepancy in (l), and attributable 

to the change in the size of the wave function. The reason for the smallness 

of the effect in this case, as compared with (1) and (16) is unclear. 

However, the prediction (17) is not as firm as (1) because of differences in 

the wave functions and the necessity to subtract out the contribution from 
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strange-nonstrange pairs. The nucleon, L and Z all have the s.v,?? spin 

couplings and the SU(6) breaking in the wave functions dw to tha hyperfiue 

iixtrraction itself is the sa:ne in all ciises and should not rli:cct the 

relation (1). However, the spin couplings in the A are diff-rent and the 

hyperfine interaction which gives attractia? between the ud pair and 

repulsion for the us and ds pairs has no simple countcrp<irt in the nucleon 

and A. These effects cwld give addition.al contributions to change the 

deviation frown the relation (17). 
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